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Does the molten globule have a native-like tertiary
fold?

ZHENG-YU PENG, LAWREN C. WU, BRENDA A.SCHULMAN
aAND PETER S. KIM

Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology,
Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142 U.S.A.

SUMMARY

One of the mysteries in protein folding is how folding intermediates direct a protein to its unique final
structure. To address this question, we have studied the molten globule formed by the a-helical domain
of a-lactalbumin (a-LA) and demonstrated that it has a native-like tertiary fold, even in the absence of
rigid, extensive side chain packing. These studies suggest that the role of molten globule intermediates in
protein folding is to maintain an approximate native backbone topology while still allowing minor
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structural rearrangements to occur.

A central issue in protein folding is to understand how
a protein can fold quickly and efficiently to a unique
native structure, despite the immense number of
conformations accessible to the unfolded polypeptide
(Levinthal 1968). This dilemma suggests that protein
folding follows specific pathways, since an exhaustive
search of all conformations is not possible on a
physiological timescale. Thus, in order to understand
protein folding, it is crucial to characterize the
intermediates on these pathways.

Molten globules are partially folded forms of proteins
proposed to be general intermediates in protein folding
(Ptitsyn et al. 1990). Molten globules are characterized
(table 1) by near-native levels of secondary structure
but very little rigid, specific tertiary packing (for
reviews, see Ptitsyn 1987, 1992; Kuwajima 1989;
Christensen & Pain 1991). Equilibrium molten glo-
bules have spectroscopic properties and stabilities
similar to that of early kinetic folding intermediates
(Kuwajima et al. 1985; Ikeguchi et al. 1986; Jennings &
Wright 1993). Yet, despite numerous studies, no high
resolution structure of a molten globule is known, and
the significance of molten globules to protein folding
remains unclear.

The backbone topology of the molten globule (i.e.,
the relative orientations of secondary structure ele-
ments to one another) is a key unresolved issue. It has

Table 1. Common characteristics of molten globules

substantial level of secondary structure, often comparable
with that of the native protein

absence of well-defined side-chain packing
lack of a cooperative thermal unfolding transition

compactness
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been proposed that molten globules correspond to
either (i) non-specific collapsed polypeptides or (ii)
expanded native-like proteins (figure 1). Answering
this question is of vital importance for understanding
the role of molten globules in protein folding. If molten
globules are non-specific collapsed polypeptides, then
they would not contain much information for protein
folding. On the other hand, if molten globules have a
native-like topology, then they provide an approximate
solution to the folding problem in which substantial
information transfer has occurred.

a-Lactalbumin (a-LA) forms the best studied molten
globule (Kuwajima et al. 1976, 1985; Nozaka et al.
1978; Dolgikh et al. 1981, 1985; Ikeguchi et al. 1986;
Baum et al. 1989; Xie et al. 1991 ; Ewbank & Creighton
1991, 19934, b; Alexandrescu ¢t al. 1993; Creighton &
Ewbank 1994; Peng & Kim 1994; Wu ¢t al. 1995). The
a-LA molten globule can be obtained under a variety
of conditions, including low pH (the A-state) and in
the presence of low concentrations of denaturants.

a-LA is a two-domain protein (figure 2). The helical
domain consists of residues 1-37 and 85-123 and
contains all four a-helices in o-LLA. The B-sheet domain
consists of residues 38-84 and contains a small
antiparallel B-sheet and several irregular structures. o-
LA has four disulphide bonds. Two of the disulphide
bonds (6-120 and 28-111) are in the a-helical domain,
one (61-77) is in the B-sheet domain, and one (73-91)
connects the two domains.

We decided to study the molten globule of a-LA by
‘protein dissection,’ removing parts of the protein
molecule deemed extraneous (Peng & Kim 1994). The
resulting molecule is called a-Domain and consists
exclusively of residues from the helical domain of a-LA
(figure 2; for simplicity, we use the same numbering
system as used for a-LA). We focused on the a-helical
domain for several reasons. First, the helical content of
the a-LLA molten globule is similar to that of native a-
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LA, as judged by circular dichroism (cp) studies
(Kuwajima et al. 1976; Nozaka et al. 1978; Dolgikh et
al. 1981, 1985). Second, nuclear magnetic resonance
(NMR) studies show that some of the native helices, but
little of the PB-sheet domain, are structured in the
molten globule of a-LA (Baum et al. 1989; Alexan-
drescu et al. 1993; Chyan et al. 1993). Finally, the
helical domain of hen egg-white lysozyme, a protein
that is structurally homologous to o-LA, has been
shown to fold prior to the B-sheet domain (Miranker et
al. 1991, 1993; Radford et al. 1992).

a-Domain (figure 2) with the native disulphide
pairings between residues 28-111 and 6-120 (called a-
Domain®) exhibits the characteristics of a molten
globule and is a good model system for molten globule
studies (Peng & Kim 1994). a-Domain®*is a compact
monomer at low concentrations (pH 8.5, no additional
salt), contains substantial helical secondary structure,
and lacks rigid side-chain packing. a-Domain®* and
native o-LA have approximately the same number of
residues in an o-helical conformation, as measured by
far-uv cp spectroscopy. The near-uv c¢p and one-

or

Role of molten globule intermediates in protein folding

dimensional proton NMR spectra of o-Domain®* are
very similar to that of the A-state molten globule of a-
LA. o-Domain®™ also exhibits a non-cooperative
thermal transition similar to that of the molten globule
of intact a-LA.

To investigate the backbone topology of a-Domain,
we performed equilibrium disulphide exchange experi-
ments (Peng & Kim 1994). The cysteines in o-Domain
are located in disparate parts of the molecule. Thus,
the relative populations of disulphide-bonded species
reflect the probability of forming different backbone
topologies. If disulphide bond formation is random,
then the relative populations can be calculated based
on a random-walk model (Kauzmann 1959), which
predicts that only 79, of the fully oxidized molecules
should have the native disulphide bonds. Strikingly, we
observe that ~ 909, of the fully oxidized molecules
have native disulphide bonds (i.e. a-Domain®*) under
native conditions (figure 3). In contrast, under
denaturing conditions, ~ 89, of the molecules were
found to have the native disulphide bonds, in agree-
ment with the value predicted by the random walk

Figure 1. A central question of molten globule structure and its role in protein folding is whether the molten globule

has a native-like tertiary fold.

Figure 2. Schematic representation of a-LA. The recombinant a-Domain (shaded) consists of residues 1-39 and
81-123 of human a-LA connected by a short linker of three glycines and preceded by an N-terminal methionine. The
two disulphide bonds in a-Domain (6-120 and 28-111) are shown in black. Cys 91, which forms an inter-domain
disulphide bond in a-LA, has been changed to alanine to avoid unwanted thiol-disulphide reactions.
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Figure 3. HPLC analysis of the disulphide exchange in a-Domain at pH 8.5 (Peng & Kim 1994). The ‘native’ isomer
(also called a-Domain®) contains disulphide bonds 28-111 and 6-120. The ‘non-native-I’ isomer contains disulphide
bonds 6-28 and 111-120, and the ‘non-native-II’ isomer contains disulphide bonds 6111 and 28-120. Under native
conditions, the ratio of native : non-native-I : non-native-II is 90:6:4. Under denaturing conditions (6 » GuHCI),

the ratio of native :

model is 7:88:5, where the probability of forming an intramolecular disulphide bond is proportional to

non-native-I : non-native-II is 8:85:7. For comparison, the ratio predicted for a random walk

~3/2 and

n—1 is the number of intervening non-cysteine residues in the loop.

unfolded state

free energy

-

conformational
space
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|

conformational
space

Figure 4. A two-step model of protein folding. The hypothetical structures of a protein in the unfolded, molten
globule, and native states are shown along with the free energy landscapes at different stages of the folding reaction.

model. Circular dichroism studies indicate that o-
Domain® has substantially more helical secondary
structure than reduced a-Domain (Peng & Kim 1994).
In contrast, both non-native disulphide bond isomers
((6-28; 111-120) and (6-111; 28-120)) contain
significantly less helical secondary structure than
reduced a-Domain. Taken together, these data indi-
cate that the polypeptide backbone of a-Domain
prefers a native-like topology and that non-native
topologies imposed by non-native disulphide bonds are
inconsistent with the high level of secondary structure
found in the molten globule of intact a-LA.
Disulphide exchange studies of the molten globule of
the entire a-LA molecule with all eight cysteines intact

Phil. Trans. R. Soc. Lond. B (1995)

failed to show a strong preference for the species with
native disulphide pairings (Ewbank & Creighton 1991,
1993 4). Instead, many disulphide bond isomers were
significantly populated, and only average properties
could be examined, since individual disulphide species
could not be studied separately. These results were
interpreted to indicate that molten globules are
actually non-specific collapsed polypeptides, in ap-
parent contradiction to the studies of a-Domain. Two
explanations of this discrepancy are apparent.

First, it is possible that the three glycine residues in
a-Domain, substituting for 41 residues of the B-sheet
domain, constrain the flexibility of the a-Domain
backbone, thereby providing a bias toward a topology
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with native disulphide pairings. Alternatively, the -
sheet domain may be unstructured in the molten
globule of intact a-LA. If this were the case, then those
a-LA molecules with native disulphide pairings in the
helical domain would be spread among three equally
probable B-sheet domain and interdomain disulphide
pairings. In addition, interdomain disulphide exchange
would further obscure the preference of the helical
domain for native disulphide pairings. A rough
calculation of the expected disulphide populations can
be made, assuming, as a crude approximation, that
those species of a-LA with native disulphide pairings in
the a-helical domain are favoured twenty-fold over all
other species. Then, the populations of a-LA molecules
with native disulphide bonds in the o-helical domain
would be spread over three peaks, each containing
~ 129, of the population, with the rest of the a-LA
population contained in the other 102 disulphide
isomers.

Recent experimental results indicate that the molten
globule form of intact a-LLA has a bipartite structure
(Wuetal. 1995). The a-helical domain strongly favours
the native backbone topology, while the PB-sheet
domain is largely unstructured. This finding provides a
likely resolution to the apparent discrepancy between
the studies of a-Domain (Peng & Kim 1994) and intact
a-LA (Ewbank & Creighton 1991, 19934) molten
globules, as outlined above. In addition, these results
demonstrate that molten globule properties need not
encompass the entire polypeptide chain and can be
achieved independently by individual domains.

Molten globules can form very quickly (typically
< 20 ms; see, for example, Kuwajima ¢t al. 1987;
Gilmanshin & Ptitsyn 1987). Late folding inter-
mediates containing extensive tertiary interactions,
including the so-called ‘highly ordered molten globule’
(Redfield et al. 1994; Feng et al. 1994), are known to be
native-like. Our results suggest that even early folding
intermediates, such as molten globules (in the tra-
ditional sense), have a native-like tertiary fold, pro-
viding a quick and approximate solution to the
Levinthal paradox.

Our results suggest a two-step model for protein
folding in which early formation of the molten globule
achieves much of the information transfer from one- to
three-dimensions (figure 4). Thus, the role of molten
globules in protein folding is to maintain an ap-
proximate native-like structure, thereby greatly de-
creasing the conformational space to be searched by
the polypeptide chain and preventing global mis-
foldings. The subsequent search for a unique folded
conformation is facilitated by the flexibility of molten
globules, which reduces the energy barriers for side
chain rearrangements.

How do molten globules achieve the native tertiary
fold? One extreme is that molten globules contain
specific tertiary interactions that are not detectable by
near-uv cp and NMR studies. The other extreme is that
more global features, such as the pattern of hydrophilic
and hydrophobic residues, side-chain volumes, and
local secondary structure propensities largely deter-
mine the tertiary fold of a protein. Further experiments
should resolve this important question.

Phil. Trans. R. Soc. Lond. B (1995)
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